
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2230
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Multistage Compression of Medical Images
for Ultra Low Power Device Applications

D.Venugopal, A.Sivanantha Raja

Abstract—Nowadays a large number of various medical images are generated from hospitals and medical centers with sophisticated
image acquisition devices. This paper deals about the techniques to decrease the communication bandwidth and to save the transmitting
power in the wireless medical devices. Digital image consumes huge memory and thus digital image data compression is necessary in
order to solve this problem. In medical applications such as disease diagnostic, the loss of information is unacceptable; hence medical
images should be compressed lossless. Wireless medical devices injected into the body are battery operated devices and hence the
lifetime of the battery should last for long time. Complexity of the compression algorithm is directly related to the power consumption of
the processor and hence there is a need for simple compression algorithms. We proposed 2 simple algorithms which can be combined
together or used separately based on the necessity to address this requirement.

Index Terms— Compression of Medical images, Binary Matrix, Gray Scale Matrix, Linux, Code composer studio, Medical injection devices.

1.INTRODUCTION

Medical imaging is a powerful and useful tool for
radiologists and consultants, allowing them to improve and
facilitate their diagnosis. Worldwide, X-ray images represents
60% of the total amount of radiological images, the remaining
consists of more newly developed image modalities such as
Computed Tomography(CT), Magnetic Resonance
Imaging(MRI), Ultrasound(US), Positron Emission
Tomography(PET), Nuclear Medicine(NM) and Digital
Subtraction Angiography(DSA).

Image communication systems for medical images have
bandwidth and image size constraints that result in time
consuming transmission of uncompressed raw image data.
Thus image compression is a key factor to improve
transmission speed and storage. It exploits common
characteristics of most images that are the neighboring picture
elements (pixels) are highly correlated. It means a typical still
image contains a large amount of spatial redundancy in plain
areas where adjacent pixels have almost the same values.

Compression is the process of storing or packing data in a
format that requires less space than the initial or original data.
Compression techniques can be classified into lossy and
lossless.

Lossy compression permits some signal degradation and
provide higher compression ratios in comparison with lossless
techniques. This is used in applications dealing with speech
and video signals where some loss of information can be
tolerated.

Lossless compression does not permit any loss of
information and allow the original signal to be recovered
exactly. This is used in a wide range of medical applications
and under special circumstances such as disease diagnostic. In
such applications, loss of information cannot be tolerated.
Thus, rather than lossy compression with relatively high
compression ratio, lossless compression methods are favored.

• D.Venugopal is associated with Electronics and

Communication Engineering Department of K.L.N
College of Information Technology, Madurai,
Tamilnadu, INDIA, PH:9843463232. E-mail:
replyvenugopal@gmail.com

• A.Sivanantha Raja is associated with Electronics and
Communication Engineering Department of A.C.
College of Engineering and Technology, Karaikudi,
Tamilnadu, INDIA

2.EXISTING TECHNIQUES/ALGORITHMS

1.Discrete Cosine Transform (DCT) based JPEG
 2.Discrete Wavelet Transform (DWT) based JPEG
 3.Lossless JPEG (JPEG-LS)
 4.Lossless JPEG 2000
 5.Huffmann encoding
 6.Lampel-Ziv coding
 7.Run length encoding
 8.Arithmatic coding
 9.Hybrid algorithms,etc

Some of the above given are lossy compression algorithms
and the rest are lossless compression algorithms. The
weakness of these methods comes from its computational load
and complexity (encoding and decoding complexity).
Moreover, they have been tested only for non-medical images.

Lossless compression algorithms provide low compression

ratio for optimum PSNR and hybrid algorithms suffer from
high complexity. Computational time and power requirement
are also the issues.

The proposed algorithm paves the way to reduce the

computational load and complexity with less computational
time. Also the image quality is maintained after
decompression for the higher compression ratios.

IJSER

http://www.ijser.org/
mailto:replyvenugopal@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2231
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.PROPOSED ALGORITHM
We present a new coding algorithm for medical images

meeting the abovesaid requirements.This algorithm is absolutely
lossless and based on pixel redundancy reduction technique.

This algorithm comprises of two stages. First stage is based

on pixel redundancy reduction technique using only two matrices
for coding and decoding processes. Second stage removes the
redundancy present in the first stage.

Among the compression techniques based onspatial

redundancy removal and pixel redundancy removal, the second
one is prefeered here for the sake of simplicity and ease of
processing.

Compression is performed based on binary matrix and gray
scale matrix with more than one stages. Output of the first stage
is fed as input to the second stage to achieve high compression
ratio. Multistage process will increase the compression ratio
considerably by proper and optimum tradeoff between picture
quality.

3.1 Stage-1 Compression Algorithm

Stage-1 is based on only two matrices, binary matrix and
grayscale matrix. Stage-1 compression is performed based on the
following steps.

1. Read the original image matrix, OR

and Construct the Binary Matrix, BM

2. First element in the BM is set to 1. Rest all are set as
follows:
[BM]i,j = 0, [OR]i,j = [OR]i,j-1

1, [OR]i,j ≠ [OR]i,j-1
3. Construct the Grayscale Matrix, GSM

First element in the GSM is set to the first value in the
original matrix OR. The remaining elements of GSM
are calculated as follows:
[GSM]k = NULL, [OR]i,j = [OR]i,j-1

[OR]i,j, [OR]i,j ≠ [OR]i,j-1
4. Compressed bit-stream is the combination of both the

matrices.
5. Binary matrix consists only of 0’s and 1’s. So 1-bi t is

enough to store each element of Binary matrix. A byte is
formed by combining consecutive 8 bits in the Binary
matrix. So Binary matrix will always takes memory
footprint of (width * height) bits = (width * height / 8)
bytes.

6. Grayscale matrix elements can have any value between
0 and 255. So each element in grayscale matrix requires
1-byte.

An example to demonstrate this is given below.

Original Matrix [OR]:
10 10 10 10

20 20 20 20

30 30 30 30

30 30 30 30

The pixel value varies from 0 to 255 and it takes one byte

for each pixel. So above matrix takes 16 bytes.
Binary Matrix [BM]:

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0

Each element of the Binary matrix takes only 1-bit and so

the above matrix takes 16 bits which is 2 bytes.
From the above matrix, combine consecutive 8-bits to form

byte values. With the above available 16 bits, byte values are
formed as follows:

[10001000, 10000000] => [136, 128]
Grayscale Matrix [GSM]:

[10 20 30]
As the elements of Grayscale matrix takes 1-byte, the above

matrix takes 3 bytes.
Compressed Bitstream:

It is a combination of GSM & BM. So it takes 2 + 3 =
5 bytes of memory footprint as follows:

[136, 128, 10, 20, 30]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2232
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.2 Stage-2 Compression Algorithm

TABLE 1
Pixel Code String Algorithm

0000 0001 One pixel in color 1
To to

1111 1111 One pixel in color 255
0000 0000 L pixels (1 – 127) in color 0
0LLL LLLL
0000 0000 L pixels (3 – 127) in color C
1LLL LLLL (L > 2)
CCCC CCCC

Above table is constructed based on prefix codes in which no

codeword will be the prefix for any other code. It is designed

to compress Binary matrix of Stage-1.

• Binary matrix will have more number of zeroes (0’s)
for medical images. So the probability of zero is more
for Binary Matrix

• Hence a separate codeword is designed in the above
table for the symbol 0 (color 0)

• And at last the table is tailored specially for Binary
Matrix constructed with medical images.

• Count consecutive same byte values, C, in the Binary
matrix and assign it to L.
An example to demonstrate this is presented. If the

output of the Binary matrix is
[0, 0, 0, 0, 0, 0, 0, 0, 1, 255, 1, 1, 1, 1, 1, 1, 1, 1, 255, 255,
255, 255, 255, 255, 255, 255, 255]

Input has 27 byte values.

8 1 0000 0000 0
 1000 1000 136
 0000 0001 1

9 255 0000 0000 0
 1000 1001 137
 1111 1111 255

Output of pixel code string has 80 bits which is equal to 10
bytes where as the input has 27 bytes.

[0, 8, 1, 255, 0, 136, 1, 0, 137, 255]

3.3 Stage-2 Decompression Algorithm

1. Read the compressed Bitstream

2. Convert the decimal values to 8-bit Binary values

3. Read 8-bits of data from the compressed Bitstream

4. If they are not equal to ‘0000 0000’ then copy that to
output (decompressed).

5. If it equals ‘0000 0000’ then read the next 8 bits.
6. Split the 1st bit and form ‘L’ with the next 7 bits.
7. If the 1st bit equals ‘0’ then store ‘L’ times 0

(decimal) to the output (decompressed).
8. If the 1st bit equals ‘1’ then read the next 8 bits and

form ‘C’. Store ‘L’ times the value ‘C’ to the outp ut
(decompressed).

9. Goto step 3 till we reach the end of the compressed

bitstream.

 L and C are obtained for each of the consecutive byte
value.
[0, 0, 0, 0, 0, 0, 0, 0] => L = 8, C = 0
[1] => L = 1, C = 1
[255] => L = 1, C = 255
[1, 1, 1, 1, 1, 1, 1, 1] => L = 8, C = 1
[255,255,255,255,255,255,255,255,255] => L = 9, C = 255

The pixel code string with the above L and C values
are formed.(Refer the pixel code string table to form this).

TABLE 2: PIXEL CODE STRING FORMATION

L C Pixel Code String Pixel Code String
 (Decimal)

8 0 0000 0000 0
 0000 1000 8

1 1 0000 0001 1

1 255 1111 1111 255

TABLE.3.Pixel Code String Algorithm

0000 0001 One pixel in color 1
to to

1111 1111 One pixel in color 255
0000 0000 L pixels (1 – 127) in color 0
0LLL LLLL
0000 0000 L pixels (3 – 127) in color C
1LLL LLLL (L > 2)
CCCC CCCC

Example:
[0, 8, 1, 255, 0, 136, 1, 0, 137, 255]

Pixel Code String Pixel Code String L C
(Decimal) (Binary)

0 0000 0000 8 0

8 0000 1000

1 0000 0001 1 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2233
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

255 1111 1111 1 255

0 0000 0000

8 1

136 1000 1000

1 0000 0001

0 0000 0000

9 255

137 1000 1001

255 1111 1111

L = 8, C = 0=> [0, 0, 0, 0, 0, 0, 0, 0]

L = 1, C = 1 => [1]

L = 1, C = 255 => [255]

L = 8, C = 1=> [1, 1, 1, 1, 1, 1, 1, 1]

L = 9, C = 255 => [255,255,255,255,255,255,255,255,255]

So the decompressed output is as follows:

[0, 0, 0, 0, 0, 0, 0, 0, 1, 255, 1, 1, 1, 1, 1, 1, 1, 1, 255, 255,
255, 255, 255, 255, 255, 255, 255]

3.4 Stage-1 Decompression Algorithm

1. Get the 2 matrices, GSM and BM.

2. Expand the Binary Matrix – Convert to Binary values

3. Read one element from GSM and assign to VAL.

4. Read one bit of BM

5. Copy the VAL to the output (decompressed)

6. Read the next bit of BM

7. If the bit equals ‘0’ copy the VAL to the output

8. If the bit equals ‘1’ read the next element from GS M

9. Repeat from Step 6 till the end of the BM.
Example:

Let the compressed bitstream be [136, 128, 10, 20,
30] with BM = [136, 128] and GSM = [10, 20, 30]
Expand the Binary Matrix:

BM Decimal Value BM (8-bit Binary representation)

 136 1000 1000

 128 1000 0000

BM bit Output Description

 (Decompressed)

1 10 **

0 10 ##

0 10 ##

0 10 ##

1 20 $$

0 20 ##

0 20 ##

0 20 ##

1 30 $$

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

** - Read the first element from GSM and store to output
- Copy the previous value from GSM to output
$$ - Read the next element from GSM and store to output

4.IMPLEMENTATION

The above mentioned algorithms were implemented in C
under Ubuntu Linux 12.04 which is the open source
community. Also it is very easy to write a shell script under
Linux to run the same algorithm multiple times. We developed
a shell script, regression.sh, to automate the algorithm. We
have chosen C language because the code written in C can be
ported to any hardware/processor. The medical devices will
have an embedded microcontroller inside it. So the code can
be easily ported to that microcontroller using its associated
development tools. The above algorithms were tested with 42
images of different resolutions and different types.

4.1 Regression setup

A shell script was written named regression.sh to run the
same algorithm with different images. The script reads each
image from the image database and calls the C written
algorithm by passing the image through command line
arguments. Our image database consists of 230 images with
different resolutions and different categories namely CT, MRI,
lung, X-Ray etc.,

A snapshot of our regression setup is shown below.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2234
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.2 Regression Results

We collected the results of our algorithm in a spread sheet
format to compute the compression ratio of each stage. A
snapshot of that is shown in the below table.

TABLE.4.COMPRESSION RATIO FOR VARIOUS IMAGES

Image Input Stage-1 Stage-2 Stage-1 Stage-
 Size compress compress comp 2
 size Size ratio comp
 ratio

1.bmp 169974 36581 28592 4.65 5.94

2.bmp 544942 117729 101858 4.63 5.35

3.bmp 405326 74217 41325 5.46 9.81

4.bmp 42694 9411 7734 4.53 5.52

5.bmp 189238 43489 37202 4.35 5.09

6.bmp 207958 43549 36213 4.78 5.74

7.bmp 186358 40144 32032 4.64 5.81

8.bmp 255094 59486 44909 4.29 5.68

Fig.2.Medical Image Database snapshot

4.3 Lossless compression

An algorithm is said to be lossless if the decompressed
image exactly bit-matches with the input image of the
compression algorithm. Hence we wrote the equivalent
decompression algorithm in C. We bit-matched all the 230
images in the database with the reconstructed images
generated from the decompression algorithms. We used the
Beyond compare software freely available in the Internet to
compare the input image and the reconstructed image.

4.4 Porting on Embedded Processor

These types of low complexity algorithms are required for
the implementation in low power embedded processors. So we
ported the C written algorithms (both Stage-1 and Stage-2) on
a low power DSP processor DM642 for measuring the code
size and for validating the algorithms. We also verified that
the algorithms are lossless by decompressing the compressed
bit-stream with the help of the equivalent decompression
algorithms which were also written in C.

A snapshot of the Code Composer Studio IDE is shown
below.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4,
Issue 5, May-2013 2235
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Algorithm Code Memory size in bytes
Stage-1 compression 928
Stage-2 compression 1312

Stage-1 Decompression 672
Stage-2 Decompression 1056

JPEG-LS 175424

So the proposed algorithm consumes less memory when
compared to the standard JPEG-LS compression algorithm
and can be implemented even in a microcontroller with limited
memory attached to it.

5.PERFORMANCE COMPARISON

5.1 Compression Ratio

The results are obtained from testing of the 42 images
available in the image database. The performance of the
proposed algorithm is compared with other research results.
The result comparisons are shown below.

TABLE.5. ALGORITHM COMPARISION
Method Technique Performance

 (Avg)
Lurawave sw Wavelets-LS 2.7
JPEG Encoder JPEG-LS 2.9

Proposed Stage-1 4.3
Algorithm
Proposed Stage-2 5.9
Algorithm

From the above table, it is clear that the stage-2 proposed
compression algorithm gives the best compression ratio.
5.2 Memory code size on DM642 DSP Processor
The memory required to fit the code in memory is computed
using Code Composer Studio IDE for DM642 DSP processor
and is shown below

6.CONCLUSION

In this paper an efficient, simple lossless image
compression technique is proposed with a remarkable
compression ratio and greatly reduced computation load
while keeping low complexity compared with other
methods. Algorithm complexity is directly related to the
power consumption of the processor. As the medical
devices injected into the body are battery powered devices
and the power consumption should be kept as low as
possible to increase the lifetime of the battery. Mainly these
kinds of algorithms are targeted in applications involving
medical devices powered with ultra low power processors
like MSP430.

Moreover it is not necessary to compress the images
using both the stages. We can turn off stage-2 compression
if the battery is low which in turn reduces the complexity of
the algorithm to slightly increase the lifetime.

REFERENCES

[1] S.E.Ghrare, M.A. Mohd. Ali, K. Jumari and M. Ismail, An Efficient

Low Complexity Lossless Coding Algorithm for Medical Images, 2009
American Journal of Applied Sciences

[2] Dr.Y.Venkataramani,S.Parveen Banu: “AnEfficient Hybrid Image
Compression Scheme based on Correlation of Pixels for Storage and
transmission of Images” - International Journal of Computer Applications
(0975 – 8887) Vol 18– No.3, March 2011.

[3] Victor Sanchez, Rafeef Abugharbieh and Panos Nasiopoulos:”3-D
Scalable Medical Image Compression with Optimized volume of Interest
coding”- IEEE Transactions on Medical Imaging Vol.29 NO. 10, October
2010

[4] Jonathan Taquet,Claude Labit, “Optimized decomposition basis using
Lanczos filters for lossless compression of biomedical images” – IEEE
Transactions on Biomedical Engineering, October 2010

[5] Aree A.Mhammad and Loay E.George: “Intraframe Compression Using
Lifting Scheme Wavelet-Based Transformation (9/7-Tap Filter)”- Journal of
Zankoy Sulaimani, December 2008.

[6] V.S.Vora, Prof. A.C.Suthar, Y.N.Makwana and S.J.Davda: “Analysis of
Compression Image Quality Assessments” – International journal of
Advanced Engineering and Applications, Jan 2010.

[7] Mohammad Saleh Miri, Ali Mahloojifar: “Retinal Image Analysis using
Curvelet Transform and Multistructure Elements Morphology by
Reconstruction” – IEEE Transactions on Biomedical Engineering, Vol. 58
No.5 (1183-1192), May 2011

IJSER

http://www.ijser.org/

